Advertisements
Advertisements
प्रश्न
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = a – b + ab
उत्तर
साहचर्य नहीं हैं क्योंकि यदि हम a = 2, b = 3 तथा c = 4 लेते हैं, तो
(a * b) * c = (2 * 3) * 4 = (2 – 3 + 6) * 4 = 5 * 4 = 5 – 4 + 20 = 21, तथा
a * (b * c) = 2 * (3 * 4) = 2 * (3 – 4 + 12) = 2 * 11 = 2 – 11 + 22 = 13
अत: (a * b) * c ≠ a * (b * c) और इसलिए * साहचर्य नहीं हैं।
APPEARS IN
संबंधित प्रश्न
मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
क्या R स्वतुल्य, सममित, संक्रामक है?
यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
सिद्ध कीजिए कि f(x) = `x/(x^2 + 1)`, ∀ ∈ + R, द्वारा परिभाषित फलन f : R → R न तो एकैकी है और न आच्छादी है।
मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R
वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + `sqrt(2)` एक अपरिमेय संख्या है, तो संबंध R
मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।
क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(a, b): a एक व्यक्ति है, b पूर्वज है a का}
मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
k = {(1,4), (2, 5)}
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
B से A में एक प्रतिचित्रण।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
h(x) = x|x|
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x बड़ा है y से, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a2 + b2 ∀ a, b ∈ Q
यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।
माना लीजिए कि A = {1, 2, 3, ...n} तथा B = {a, b}। तो A से B में आच्छादी प्रतिचित्रों (प्रतिचित्रणों) की संख्या _________ है।
मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x) ______ है।
मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।
मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।
फलनों का संयोजन क्रम-विनिमेय होता है।