Advertisements
Advertisements
प्रश्न
Match the equations A, B, C and D with the lines L1, L2, L3 and L4, whose graphs are roughly drawn in the given diagram.
A ≡ y = 2x;
B ≡ y – 2x + 2 = 0;
C ≡ 3x + 2y = 6;
D ≡ y = 2
उत्तर
Putting x = 0 and y = 0 in the equation y = 2x, we have:
LHS = 0 and RHS = 0
Thus, the line y = 2x passes through the origin.
Hence, A = L3
Putting x = 0 in y − 2x + 2 = 0, we get, y = −2
Putting y = 0 in y − 2x + 2 = 0, we get, x = 1
So, x-intercept = 1 and y-intercept = −2
So, x-intercept is positive and y-intercept is negative.
Hence, B = L4
Putting x = 0 in 3x + 2y = 6, we get, y = 3
Putting y = 0 in 3x + 2y = 6, we get, x = 2
So, both x-intercept and y-intercept are positive.
Hence, C = L2
The slope of the line y = 2 is 0.
So, the line y = 2 is parallel to x-axis.
Hence, D = L1
APPEARS IN
संबंधित प्रश्न
Write the equation of each of the following lines:
- The x-axis and the y-axis.
- The line passing through the origin and the point (-3, 5).
- The line passing through the point (-3, 4) and parallel to X-axis.
The equation of a line is x – y = 4. Find its slope and y-intercept. Also, find its inclination.
Is the line 3x + 4y + 7 = 0 perpendicular to the line 28x – 21y + 50 = 0?
Is the line x – 3y = 4 perpendicular to the line 3x – y = 7?
Find the equation of the line passing through (−2, 1) and perpendicular to 4x + 5y = 6.
Prove that :
“If a line parallel to a side of a triangle intersects the remaining sides in two distince points, then the line divides the sides in the same proportion.”
Find:
- equation of AB
- equation of CD
A straight line passes through the points P(–1, 4) and Q(5, –2). It intersects x-axis at point A and y-axis at point B. M is the mid-point of the line segment AB. Find:
- the equation of the line.
- the co-ordinates of point A and B.
- the co-ordinates of point M.
A line through point P(4, 3) meets x-axis at point A and the y-axis at point B. If BP is double of PA, find the equation of AB.
A line segment joining P(2, –3) and Q(0, –1) is cut by the x-axis at the point R. A line AB cuts the y-axis at T(0, 6) and is perpendicular to PQ at S.
Find the:
- equation of line PQ
- equation of line AB
- coordinates of points R and S.