हिंदी

Match the following : A B (i) Adiabatic process (a) Heat (ii) Isolated system (b) At constant volume (iii) Isothermal change (c) First law of thermodynamics (iv) Path function (d) No exchang - Chemistry

Advertisements
Advertisements

प्रश्न

Match the following :

A B
(i) Adiabatic process (a) Heat
(ii) Isolated system (b) At constant volume
(iii) Isothermal change (c) First law of thermodynamics
(iv) Path function (d) No exchange of energy and matter
(v) State function (e) No transfer of heat
(vi) ΔU = q (f) Constant temperature
(vii) Law of conservation of energy (g) Internal energy
(viii) Reversible process (h) Pext = o
(ix) Free expansion (i) At constant pressure
(x) ΔH = q (j) Infinitely slow process which proceeds through a series of equilibrium states.
(xi) Intensive property (k) Entropy
(xii) Extensive property (l) Pressure
  (m) Specific heat
जोड़ियाँ मिलाइएँ

उत्तर

A B
(i) Adiabatic process (e) No transfer of heat
(ii) Isolated system (d) No exchange of energy and matter
(iii) Isothermal change (f) Constant temperature
(iv) Path function (a) Heat
(v) State function (g) Internal energy
(vi) ΔU = q (b) At constant volume
(vii) Law of conservation of energy (c) First law of thermodynamics
(viii) Reversible process (j) Infinitely slow process which proceeds through a series of equilibrium states.
(ix) Free expansion (h) Pext = o
(x) ΔH = q (i) At constant pressure
(xi) Intensive property (m) Specific heat
(xii) Extensive property (k) Entropy
shaalaa.com
Thermodynamics Applications - Work
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Thermodynamics - Multiple Choice Questions (Type - I) [पृष्ठ ७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Chemistry [English] Class 11
अध्याय 6 Thermodynamics
Multiple Choice Questions (Type - I) | Q 51 | पृष्ठ ७५

संबंधित प्रश्न

The pressure-volume work for an ideal gas can be calculated by using the expression w = `- int_(v_i)^(v_f) p_(ex)  dV`. The work can also be calculated from the pV– plot by using the area under the curve within the specified limits. When an ideal gas is compressed (a) reversibly or (b) irreversibly from volume Vi to Vf. choose the correct option.


A sample of 1.0 mol of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure 6.1. What will be the value of ∆H for the cycle as a whole?


What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, pext in a single step as shown in figure. Explain graphically.


How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?


1.0 mol of a monoatomic ideal gas is expanded from state (1) to state (2) as shown in figure. Calculate the work done for the expansion of gas from state (1) to state (2) at 298 K.


An ideal gas is allowed to expand against a constant pressure of 2 bar from 10 L to 50 L in one step. Calculate the amount of work done by the gas. If the same expansion were carried out reversibly, will the work done be higher or lower than the earlier case? (Given that 1 L bar = 100 J)


For silver Cp (J K-1 mol-1) = 23 + 0.01 T. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atom pressure, the value of ΔH will be close to ______.


Calculate the work involved when 1 mol of an ideal gas is compressed reversibly from 1.00 bar to 5.00 bar at a constant temperature of 300 K ______.


The net work done in the following cycle for one mol of an ideal gas will be ______ (in calorie), where in process BC, PT = constant. (R = 2 cal/mol-K).


An ideal gas expands in volume from 1 × 10−3 to 1 × 10−2 m3 at 300 K against a constant pressure of 1 × 105 Nm−2. The work done is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×