हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (हिंदी माध्यम) १० वीं कक्षा

निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए। L(6, 4), M(-5, -3), N(-6, 8) - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

L(6, 4), M(-5, -3), N(-6, 8)

योग

उत्तर

L(6, 4); M(-5, -3); N(-6, 8).

दूरी सूत्र से,

LM = `sqrt((-5 - 6)^2 + (-3 - 4)^2)`

= `sqrt((-11)^2 + (-7)^2)`

= `sqrt(121 + 49) = sqrt170` .................(1)

MN = `sqrt([-6 - (-5)]^2 + [8 - (-3)]^2)`

= `sqrt((-6 + 5)^2 + (8 + 3)^2)`

= `sqrt((-1)^2 + (11)^2)`

= `sqrt(1 + 121) = sqrt122` ................(2)

LN = `sqrt((-6 - 6)^2 + (8 - 4)^2)`

= `sqrt((-12)^2 + (4)^2)`

= `sqrt(144 + 16) = sqrt160` ................(3)

MN + LN = `sqrt122 + sqrt160`

किसी त्रिभुज को बनाने के लिए उसकी किन्हीं दो भुजाओं की लंबाइयों का योग उसकी तीसरी भुजा से अधिक होना चाहिए |

हमें यह सत्यापित करने की आबश्यकता है कि, क्या?

`sqrt122 + sqrt160 > sqrt170`

अब,

`(sqrt122 + sqrt160)^2 = (sqrt(122))^2 + 2sqrt122 xx sqrt160 + (sqrt(160))^2`

= `122 + 2sqrt122 xx sqrt160 + sqrt160`

= `280 + 2sqrt122 xx sqrt160` .................(4)

`(sqrt(170))^2 = 170` ................(5)

282 > 170

∴ 282 + `2sqrt122 xx sqrt160 > sqrt170`

∴ `(sqrt122 + sqrt160)^2 > (sqrt(170))^2` .............[(4) और (5) से]

∴ `sqrt122 + sqrt160 > sqrt170` .............(दोनों पक्षों का वर्गमूल लेने पर)

∴ इन बिंदुओं को जोड़ने वाले रेखाखंड से त्रिभुज बना सकते है |

∵ LM ≠ MN ≠ LN

∴ ΔLMN विषमबाहु त्रिभुज है | 

shaalaa.com
दूरी सूत्र
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: निर्देशांक भूमिति - प्रकीर्ण प्रश्नसंग्रह 5 [पृष्ठ १२३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
अध्याय 5 निर्देशांक भूमिति
प्रकीर्ण प्रश्नसंग्रह 5 | Q 8. (1) | पृष्ठ १२३

संबंधित प्रश्न

सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।


नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।

L(-2, 3), M(1, -3), N(5, 4) 


निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)


सिद्ध कीजिए कि, बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु हैं।


बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?


निर्धारित कीजिए कि क्या बिंदु (1, 5), (2, 3) और (-2, -11) संरेखी हैं।


बिंदु P(–6, 8) की मूलबिंदु से दूरी ______ है।


तीन शीर्षों A(–2, 3), B(6, 7) और C(8, 3) वाले समांतर चतुर्भुज ABCD का चौथा शीर्ष D ______ हैं।


x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?


बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×