Advertisements
Advertisements
प्रश्न
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– 3x + 5y = 7 और 2px – 3y = 1
यदि इन समीकरणों द्वारा निरूपित रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।
उत्तर
रैखिक समीकरणों का दिया गया युग्म है।
– 3x + 5y = 7
2px – 3y = 1
ax + by + c = 0 से तुलना करने पर, हमें मिलता है।
यहाँ, a1 = –3, b1 = 5, c1 = – 7
और a2 = 2p, b2 = – 3, c2 = – 1
`a_1/a_2 = (-3)/(2p)`
`b_1/b_2 = (-5)/3`
`c_1/c_2` = 7
चूँकि, रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद कर रही हैं, अर्थात इसका एक अद्वितीय समाधान है।
`a_1/a_2 ≠ b_1/b_2`
`(-3)/(2p) ≠ (-5)/3`
`p ≠ 9/10`
इसलिए, इन समीकरणों द्वारा निरूपित रेखाएँ `9/10` को छोड़कर p के सभी वास्तविक मानों के लिए एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।
APPEARS IN
संबंधित प्रश्न
आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा। (क्या यह मनोरंजक है?)' इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
5x - 4y + 8 = 0
7x + 6y - 9 = 0
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
px + qy = p - q
qx - py = p + q
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
ax + by = c
bx + ay = 1 + c
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
`x/a - y/b = 0`
ax + by = a2 + b2
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
(a - b)x + (a + b)y = a2 - 2ab - b2
(a + b)(x + y) = a2 + b2
एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
– x + py = 1 और px – y = 1,
यदि समीकरण-युग्म का कोई हल नहीं है।
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।
दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।