हिंदी

Obtain an expression for the orbital magnetic moment of an electron rotating about the nucleus in an atom. - Physics

Advertisements
Advertisements

प्रश्न

Obtain an expression for the orbital magnetic moment of an electron rotating about the nucleus in an atom.

व्युत्पत्ति

उत्तर १

In the Bohr model of a hydrogen atom, the electron of charge - e performs a uniform circular motion around the positively charged nucleus. Let r, v and T be the orbital radius, speed and period of motion of the electron. Then,

T = `(2pi"r")/"v"`       ...(1)

Therefore, the orbital magnetic moment associated with this orbital current loop has a magnitude,

I = `"e"/"T" = "ev"/(2pi"r")`    ...(2)

Therefore, the magnetic dipole moment associated with this electronic current loop has a magnitude

M0 = current × area of the loop

`= "l"(pi"r"^2) = "ev"/(2pi"r") xx pi"r"^2 = 1/2 "evr"`    ....(3)

Multiplying and dividing the right-hand side of the above expression by the electron mass me,

`"M"_0 = "e"/(2"m"_"e") ("m"_"e""vr") = "e"/(2"m"_"e") "L"_0`     ....(4)

where L0 - mevr is the magnitude of the orbital angular momentum of the electron. `vec"M"_0` is opposite to `vec"L"_0`.

∴ `vec"M"_0 = - "e"/(2"m"_"e") vec"L"_0`      ....(5)

which is the required expression. →

According to Bohr's second postulate of stationary orbits in his theory of hydrogen atom, the angular momentum of the electron in the nth stationary orbit is equal to n `"h"/(2pi)`, where h is the Planck constant and n is a positive integer. Thus, for an orbital electron,

`"L"_0 = "m"_"e" "vr" = ("nh")/(2pi)`    ...(6)

Substituting for L0 in Eq. (4),

`"M"_0 = "enh"/(4pi"m"_"e")`

For n = 1, M0 = `"eh"/(4pi"m"_"e")`

The quantity `"eh"/(4pi"m"_"e")` is a fundamental constant called the Bohr magneton,

`therefore mu_"B" * mu_"B"`

`= 9.274 xx 10^-24 "J"//"T"` (or Am2)

= 5.788 x 10-5 eV/T.

shaalaa.com

उत्तर २

Expression for magnetic dipole moment:

  1. Consider an electron of mass me and charge e revolving in a circular orbit of radius r around the positive nucleus in a clockwise direction, leading to an anticlockwise current.

    U.C.M of an electron around the nucleus
  2. If the electron travels a distance 2πr in time T then, its orbital speed v = 2πr/T
  3. The magnitude of circulating current is given by,
    I = e`(1/"T")`
    But, T = `(2pi"r")/"v"`
    ∴ I = e`(1/(2pir"/""v")) = "ev"/(2pi"r")`
  4. The orbital magnetic moment associated with the orbital current loop is given by,
    morb = IA = `"ev"/(2pi"r") xx pi"r"^2` [∵ Area of current loop, A = πr2]
    ∴ morb = `"evr"/2` ….(1)
  5. The angular momentum of an electron due to its orbital motion is given by, 
    L = mevr 
  6. Multiplying and dividing the R.H.S of equation (1) by me
    morb = `"e"/(2"m"_"e") xx "m"_"e""vr"`
    ∴ morb = `"eL"/(2"m"_"e")`
  7. This equation shows that the orbital magnetic moment is proportional to the angular momentum. But as the electron bears a negative charge, the orbital magnetic moment and orbital angular momentum are in opposite directions and perpendicular to the plane of the orbit.
    Using vector notation, `vec"m"_"orb" = -("e"/(2"m"_"e"))vec"L"` 
shaalaa.com

उत्तर ३

Consider an electron moving with constant speed v in a circular orbit of radius r about the nucleus as shown in the figure.

If the electron travels a distance of 2πr (circumference) in time T, then its orbital speed, `v=(2pir)/T`.

Thus the current I associated with this orbiting electron of charge e is

`I = e/T`

`T = (2pi)/omega and omega=v/r`, the angular speed 

`I = (eomega)/(2pi)=(ev)/(2pir)`

The orbital magnetic moment associated with orbital current loop is

`m_("orb")=IA=(ev)/(2pir)xxpir^2`

`=1/2evr`

shaalaa.com
Origin of Magnetism in Materials
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Magnetic materials - Short Answer II

संबंधित प्रश्न

An electron in an atom is revolving around the nucleus in a circular orbit of a radius of 5.3 x 10-11 m, with a speed of 2 x 106 m/s. Find the resultant orbital magnetic moment and angular momentum of the electron. [e = 1.6 x 10-19 C, me= 9.1 x 10-31 kg]


What is stated in terms of Bohr magneton? 


The electron in the hydrogen atom is moving with a speed of 2.5 × 106 m/s in an orbit of a radius of 0.5 Å. What is the Magnetic moment of the revolving electron?    


Explain the origin of magnetism in material, hence find a magnetic moment of an electron revolving around the nucleus of an atom. 


If M0 and L0 denote the orbital angular moment and the angular momentum of the electron due to its orbital motion, then the gyromagnetic ratio is given by ______


A circular coil of radius R has a resistance of 40 Ω. Figure shows two points P and Q on the circumference separated by a distance `(pi"R")/2`, which are connected to a 16 V battery with internal resistance of 0.5 Ω. What is the value of current I flowing through the circuit?


The S.I. unit of gyromagnetic ratio is ______


The Gyromagnetic ratio of the electron revolving in a circular orbit of a hydrogen atom is 8.8 x 1010 C kg-1. What is the mass of the electron? (Given charge of the electron = 1.6 x 10-19 C.) 


The angle made by orbital angular momentum of electron with the direction of the orbital magnetic moment is ______.


Dimensions of Gyromagnetic ratio are _________.


An electron revolving in a circular orbit of radius 'r' with velocity 'v' and frequency v has orbital magnetic moment 'M'. If the frequency of revolution is tripled then the new magnetic moment will be ____________.


The electron in the hydrogen atom is moving with a speed of 1.5 x 106 m/s in an orbit of radius 2 Å. Magnetic moment of the revolving electron is ____________.


In a hydrogen atom, an electron of charge e revolves in a orbit of radius r with speed v. Then, the magnetic moment associated with electron is ______.


An electron revolving in a circular orbit of radius 'r' with velocity 'V' and frequency 'v' has orbital magnetic moment 'M'. If the frequency of revolution is doubled then the new magnetic moment will be ____________.


An electron (e) is revolving in a circular orbit of radius 'r' in hydrogen atom. The angular momentum of the electron is (M = magnetic dipole moment associated with it and m = mass of electron) ____________.


Magnetic moment of revolving electron of charge 'e' and mass 'm' in terms of angular momentum 'L' of electron is ____________.


The electron in hydrogen atom is moving in an orbit of radius 0.53 Å. It takes 1.571 x 10-16 s to complete one revolution. The velocity of electron will be `pi` = 3.142.


In an atom, electron of charge (-e) perform U.C.M. around a stationary positively charged nucleus, with period of revolution 'T'. If 'r' is the radius of the orbit of the electron and 'v' is the orbital velocity, then the circulating current (I) is proportional to ____________.


The period of oscillation of a magnet in a vibration magnetometer is 2 sec. The period of oscillation of a magnet whose magnetic moment is four times that of the first magnet is ______.


A bar magnet of magnetic moment M1 is cut into two pieces along its axis. The pieces are kept perpendicular to each other with their unlike poles in contact. The magnetic moment of the arrangement is M2. The ratio of M1/M2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×