Advertisements
Advertisements
प्रश्न
On the basis of Crystal Field Theory, write the electronic configuration of d4 ion if Δ0 > P.
Write the electronic configuration of d4 ion if Δ0 > P.
उत्तर
If Δ0 > P, the electronic configuration of the d4 ion will be \[\ce{t_2g^4eg^0}\] as it is associated with strong field and low spin situations.
संबंधित प्रश्न
What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.
How are the following conversions carried out?
Benzoic acid into metanitrobenzoic acid.
Why are low spin tetrahedral complexes rarely observed?
Write the electronic configuration of Fe(III) on the basis of crystal field theory when it forms an octahedral complex in the presence of (i) strong field, and (ii) weak field ligand. (Atomic no.of Fe=26)
Why are low spin tetrahedral complexes not formed?
Give the electronic configuration of the following complexes on the basis of Crystal Field Splitting theory.
\[\ce{[CoF6]^{3-}, [Fe(CN)6]^{4-} and [Cu(NH3)6]^{2+}}\].
Arrange following complex ions in increasing order of crystal field splitting energy (∆O):
\[\ce{[Cr(Cl)6]^{3-}, [Cr(CN)6]^{3-}, [Cr(NH3)6]^{3+}}\].
\[\ce{CuSO4 . 5H2O}\] is blue in colour while \[\ce{CuSO4}\] is colourless. Why?
Match the complex ions given in Column I with the hybridisation and number of unpaired electrons given in Column II and assign the correct code:
Column I (Complex ion) | Column II (Hybridisation, number of unpaired electrons) |
A. \[\ce{[Cr(H2O)6]^{3+}}\] | 1. dsp2, 1 |
B. \[\ce{[Co(CN)4]^{2-}}\] | 2. sp3d2, 5 |
C. \[\ce{[Ni(NH3)6]^{2+}}\] | 3. d2sp3, 3 |
D. \[\ce{[MnF6]^{4-}}\] | 4. sp3, 4 |
5. sp3d2, 2 |
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following:
\[\ce{[CoF6]^{3-}, [Co(H2O)6]^{2+}, [Co(Cn)6]^{3-}}\]
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following:
\[\ce{[FeF6]^{3-}, [Fe(H2O)6]^{2+}, [Fe(CN)6]^{4-}}\]
Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands?
The CFSE for octahedral [CoCl6]−4 is 18,000 cm−1. What will be the CFSE for tetrahedral [CoCl3]−2?
[Ni(H2O)6]2+ (aq) is green in colour whereas [Ni(H2O)4 (en)]2+ (aq)is blue in colour, give reason in support of your answer.
Considering crystal field theory, strong-field ligands such as CN–:
The correct order of increasing crystal field strength in following series:
The magnitude of CFSE depends upon ______
Using crystal field theory, write the electronic configuration of d5 ion, if Δ0 > P.
What is the spectrochemical series?
On the basis of crystal field theory, write the electronic configuration for the d5 ion with a weak ligand for which Δ0 < P.