हिंदी

P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.

योग

उत्तर

Given: In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively.

Also, AC = BD

To prove: PQRS is a rhombus.


Proof: In ΔADC, S and R are the mid-points of AD and DC respectively.

Then, by mid-point theorem.

SR || AC and SR = `1/2` AC  ...(i)

In ΔABC, P and Q are the mid-points of AB and BC respectively.

Then, by mid-point theorem.

PQ || AC and PQ = `1/2` AC  ...(ii)

From equations (i) and (ii),

SR = PQ = `1/2` AC  ...(iii)

Similarly, in ΔBCD,

RQ || BD and RQ = `1/2` BD  ...(iv)

And in ΔBAD,

SP || BD and SP = `1/2` BD  ...(v)

From equations (iv) and (v),

SP = RQ = `1/2` BD = `1/2` AC  [Given, AC = BD] ...(vi)

From equations (iii) and (vi),

SR = PQ = SP = RQ

It shows that all sides of a quadrilateral PQRS are equal.

Hence, PQRS is a rhombus.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Quadrilaterals - Exercise 8.4 [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 8 Quadrilaterals
Exercise 8.4 | Q 3. | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.


In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


D, E, and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC.

Prove that ΔDEF is also isosceles.


In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×