हिंदी

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

उत्तर

Let ABCD is a quadrilateral in which P, Q, R, and S are the mid-points of sides AB, BC, CD, and DA respectively. Join PQ, QR, RS, SP, and BD.

In ΔABD, S and P are the mid-points of AD and AB respectively. Therefore, by using mid-point theorem, it can be said that

SP || BD and SP = 1/2BD ... (1)

Similarly in ΔBCD,

QR || BD and QR = 1/2BD ... (2)

From equations (1) and (2), we obtain

SP || QR and SP = QR

In quadrilateral SPQR, one pair of opposite sides is equal and parallel to

each other. Therefore, SPQR is a parallelogram.

We know that diagonals of a parallelogram bisect each other.

Hence, PR and QS bisect each other.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Quadrilaterals - Exercise 8.2 [पृष्ठ १५१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 8 Quadrilaterals
Exercise 8.2 | Q 6 | पृष्ठ १५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.


In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


Fill in the blank to make the following statement correct:

The figure formed by joining the mid-points of consecutive sides of a quadrilateral is           


In the figure, give below, 2AD = AB, P is mid-point of AB, Q is mid-point of DR and PR // BS. Prove that:
(i) AQ // BS
(ii) DS = 3 Rs.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find DE, if AB = 8 cm


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: AP = 2AR


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: 2EF = BD.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×