हिंदी

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that i. D is the mid-point of AC ii. MD ⊥ AC iii. CM = MA = 12AB - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`
योग

उत्तर

(i) In ΔABC,

It is given that M is the mid-point of AB and MD || BC.

Therefore, D is the mid-point of AC.       ...(Converse of mid-point theorem)

(ii) As DM || CB and AC is a transversal line for them, therefore,

∠MDC + ∠DCB = 180°      ...(Co-interior angles)

∠MDC + 90° = 180°

∠MDC = 90°

∴ MD ⊥ AC

(iii) Join MC.

In ΔAMD and ΔCMD,

AD = CD         ...(D is the mid-point of side AC)

∠ADM = ∠CDM      ...(Each 90º)

DM = DM     (Common)

∴ ΔAMD ≅ ΔCMD        ...(By SAS congruence rule)

Therefore, AM = CM       ...(By CPCT)

However, AM = `1/2AB`       ...(M is the mid-point of AB)

Therefore, it can be said that

CM = AM = `1/2AB`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Quadrilaterals - Exercise 8.2 [पृष्ठ १५१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 8 Quadrilaterals
Exercise 8.2 | Q 7 | पृष्ठ १५१

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×