हिंदी

In a Parallelogram Abcd, E and F Are the Midpoints of the Sides Ab and Cd Respectively. the Line Segments Af and Bf Meet the Line Segments De and Ce at Points G and H Respectively Prove That: δHeb ≅ - Mathematics

Advertisements
Advertisements

प्रश्न

In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC

योग

उत्तर


Since ABCD is a parallelogram,
AB = CD and AD = BC
Now, E and F are the mid-points of AB and CD respectively,
⇒ AE = EB = DF = FC ....(i)

In ΔHEB and ΔHFC,
BE = FC              ....[From (i)]
∠EHB = ∠FHC  ....(vertically opposite angles)
∠HBE = ∠HFC  ....(Alternate interior angles)
∴ ΔHEB ≅ ΔHFC.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mid-point and Intercept Theorems - Exercise 15.2

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 15 Mid-point and Intercept Theorems
Exercise 15.2 | Q 1.2

संबंधित प्रश्न

In a ΔABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC
intersects FE at Q. Prove that AQ = QP.


In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that

CQ = `[1]/[4]`AC. PQ produced meets BC at R.

Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB


In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×