हिंदी

In the Figure, □ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = ABDC12(AB+DC). - Geometry

Advertisements
Advertisements

प्रश्न

In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.

योग

उत्तर

Given: `square`ABCD is a trapezium.

To prove: PQ || AB and PQ = `1/2`(AB + DC)

Construction: Extend line AQ in such a way that, on extending side DC, intersect it at point R.

Proof:

seg AB || seg DC      ...(Given)

and seg BC is their transversal.

∴ ∠ABC ≅ ∠RCB       ...(Alternate angles)

∴ ∠ABQ ≅ ∠RCQ       ...(i)   ...(B-Q-C)

In ∆ABQ and ∆RCQ,

∠ABQ ≅∠RCQ       ...[From (i)]

seg BQ ≅ seg CQ      ...(Q is the midpoint of seg BC)

∠BQA ≅ ∠CQR        ...(Vertically opposite angles)

∴ ∆ABQ ≅ ∆RCQ        ...(ASA test)

seg AB ≅ seg CR       ...(c.s.c.t.)  ...(ii)

seg AQ ≅ seg RQ      ...(c.s.c.t.)  ...(iii)

In ∆ADR,

Point P is the midpoint of line AD.       ...(Given)

Point Q is the midpoint of line AR.      ...[From (iii)]

∴ seg PQ || side DR        ...(Midpoint Theorem)

∴ seg PQ || side DC       ...(iv)    ...(D-C-R)

∴ side AB || side DC       ...(v)    ...(Given)

∴ seg PQ || side AB      ...[From (iv) and (v)]

PQ = `1/2` DR       ...(Midpoint Theorem)

= `1/2` (DC + CR)

= `1/2` (DC + AB)        ...[From (ii)]

∴ PQ = `1/2` (AB + DC)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Quadrilaterals - Problem Set 5 [पृष्ठ ७४]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
अध्याय 5 Quadrilaterals
Problem Set 5 | Q 8 | पृष्ठ ७४

संबंधित प्रश्न

In a triangle ∠ABC, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the measures of the angles of

the triangle formed by joining the mid-points of the sides of this triangle. 


BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.


D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.

In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


If L and M are the mid-points of AB, and DC respectively of parallelogram ABCD. Prove that segment DL and BM trisect diagonal AC.


In ∆ABC, AB = 5 cm, BC = 8 cm and CA = 7 cm. If D and E are respectively the mid-points of AB and BC, determine the length of DE.


Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×