हिंदी

In Parallelogram Abcd, E is the Mid-point of Ab and Ap is Parallel to Ec Which Meets Dc at Point O and Bc Produced at P. Prove That: (I) Bp = 2ad (Ii) O is the Mid-point of Ap. - Mathematics

Advertisements
Advertisements

प्रश्न

In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.

योग

उत्तर

Given ABCD is parallelogram, so AD = BC, AB = CD.

Consider triangle APB, given EC, is parallel to AP and E is the midpoint of side AB.
So by midpoint theorem,
C has to be the midpoint of BP.

So BP = 2BC, but BC = AD as ABCD is a parallelogram.
Hence BP = 2AD

Consider triangle APB, AB || OC as ABCD is a parallelogram.
So by midpoint theorem,
O has to be the midpoint of AP.
Hence Proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५४]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 12 | पृष्ठ १५४

संबंधित प्रश्न

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In a ΔABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC
intersects FE at Q. Prove that AQ = QP.


In a ΔABC, BM and CN are perpendiculars from B and C respectively on any line passing
through A. If L is the mid-point of BC, prove that ML = NL.


In triangle ABC; M is mid-point of AB, N is mid-point of AC and D is any point in base BC. Use the intercept Theorem to show that MN bisects AD.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find DE, if AB = 8 cm


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


In ΔABC, D and E are the midpoints of the sides AB and AC respectively. F is any point on the side BC. If DE intersects AF at P show that DP = PE.


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×