हिंदी

In δAbc, D and E Are the Midpoints of the Sides Ab and Ac Respectively. F is Any Point on the Side Bc. If De Intersects Af at P Show that Dp = Pe. - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, D and E are the midpoints of the sides AB and AC respectively. F is any point on the side BC. If DE intersects AF at P show that DP = PE.

योग

उत्तर

Note: This question is incomplete.
According to the information given in the question,
F could be any point on BC as shown below:

So, this makes it impossible to prove that DP = DE, since P too would shift as F shift because P too would be any point on DE as F is.
Note: If we are given F to be the mid-point of BC, the result can be proved.

D and E are the mid-points of AB and AC respectively.

DE || BC and DE = `(1)/(2)"BC"`

But F is the mid-point of BC.

⇒ BF = FC = `(1)/(2)"BC"` = DE

Since D is the mid-point of AB, and DP || EF, P is the mid-point of AF.
Since P is the mid-point of AF and E is the mid-point of AC,

PE = `(1)/(2)"FC"`

Also, D and P are the mid-points of AB and AF respectively.

⇒ DP = `(1)/(2)"BF"`

= `(1)/(2)"FC"`

= PE ....(Since BF = FC)
⇒ DP = PE.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mid-point and Intercept Theorems - Exercise 15.2

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 15 Mid-point and Intercept Theorems
Exercise 15.2 | Q 6

संबंधित प्रश्न

In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.


ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: F is the mid-point of BC.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


E is the mid-point of a median AD of ∆ABC and BE is produced to meet AC at F. Show that AF = `1/3` AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×