हिंदी

Abcd is a Kite Having Ab = Ad and Bc = Cd. Prove that the Figure Formed by Joining the Mid-points of the Sides, in Order, is a Rectangle. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.

उत्तर

Given,
A kite ABCD having AB = AD and BC = CD. P,Q,R, S are the midpoint of sides
AB,BC,CD andDArespectively PQ,QR,RS and spare joined
To prove:
PQRS is a rectangle

Proof:

In ΔABC, P and Q are the midpoints of AB and BC respectively.

∴PQ || AC and PQ = `1/2` AC            ....(i )

In Δ ADC, R and S are the midpoint of CD and AD respectively.

∴ RS || AC and RS = `1/2` AC             .....(ii )

From (i) and (ii), we have

PQ || RS and PQ = RS

Thus, in quadrilateral PQRS, a pair of opposite sides are equal and parallel. So PQRS is a
parallelogram. Now, we shall prove that one angle of parallelogram PQRS it is a right angle
Since AB = AD

⇒  `1/2` AB = AD  `(1/2)`

⇒  AP = AS                  ...(iii)         [∵ P and S are the midpoints of B and AD respectively]

⇒  `∠`1 = `∠`2                    ....(iv)

Now, in ΔPBQ and ΔSDR, we have

PB = SD                [ AD = AB ⇒ `1/2` AD = `1/2` AB ]

BQ = DR                  ∴ PB = SD

And PQ = SR         PQRS is a parallelogram]

So by SSS criterion of congruence, we have

Δ PBQ ≅  Δ SOR

⇒  `∠`3 = `∠`4         [CPCT ]

Now, `∠`3 + `∠`SPQ + `∠`2 = 180°

 And `∠`1+ `∠`PSR + `∠`4 =180°

`∠`3 + `∠`SPQ + `∠`2 = `∠`1+ `∠`PSR + `∠`4

⇒ `∠`SPQ = `∠`PSR          (`∠`1 = `∠`2 and `∠`3 = `∠`4)

Now,   transversal   PS   cuts   parallel   lines   SR   and   PQ   at   S   and   P   respectively.

`∠`SPQ + `∠`PSR = 180°

⇒ 2`∠`SPQ = 180° = `∠`SPQ = 90°          [ ∵ `∠`PSR = `∠`SPQ]

Thus, PQRS is a parallelogram such that `∠`SPQ = 90°

Hence, PQRS is a parallelogram.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 10 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is a diagonal. Show that:

  1. SR || AC and SR = `1/2AC`
  2. PQ = SR
  3. PQRS is a parallelogram.


In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.


In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.


In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


In triangle ABC, D and E are points on side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meets side BC at points M and N respectively. Prove that: BM = MN = NC.


If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


In the given figure, T is the midpoint of QR. Side PR of ΔPQR is extended to S such that R divides PS in the ratio 2:1. TV and WR are drawn parallel to PQ. Prove that T divides SU in the ratio 2:1 and WR = `(1)/(4)"PQ"`.


Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×