हिंदी

In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle. - Geometry

Advertisements
Advertisements

प्रश्न

In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.

योग

उत्तर

Given: ∆ABC is an equilateral triangle and D, E and F are mid-points of BC, AC and AB respectively.

To prove: ∆FED is an equilateral triangle.

Proof:

In ΔABC,

Points F and E are the midpoints of sides AB and AC respectively.      ...(Given)

∴ FE = `1/2` BC       ...(From midpoint theorem) ...(i)

In ΔABC,

Points D and E are the midpoints of sides BC and AC respectively.     ...(Given)

∴ DE = `1/2` AB      ...(From midpoint theorem)   ...(ii)

In ΔABC,

Points D and F are the midpoints of sides BC and AB respectively.     ...(Given)

∴ DF = `1/2` AC       ...(From midpoint theorem) ...(iii)

Now, ΔABC is an equilateral triangle.

∴ BC = AB = AC      ...(Sides of equilateral triangle)

∴ `1/2` BC = `1/2` AB = `1/2` AC     ...(Multiplying both sides by `1 /2`)

∴ FE = DE = DF       ...[From (i), (ii) and (iii)]

∴ ΔFED is an equilateral triangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Quadrilaterals - Practice Set 5.5 [पृष्ठ ७३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
अध्याय 5 Quadrilaterals
Practice Set 5.5 | Q 3 | पृष्ठ ७३

संबंधित प्रश्न

In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


Show that the line segments joining the mid-points of the opposite sides of a quadrilateral
bisect each other.


A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that

CQ = `[1]/[4]`AC. PQ produced meets BC at R.

Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.


The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD such that AC ⊥ BD. Prove that PQRS is a rectangle.


E is the mid-point of a median AD of ∆ABC and BE is produced to meet AC at F. Show that AF = `1/3` AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×