हिंदी

In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that PMPRPMPR=13. [Hint: DN || QM] - Geometry

Advertisements
Advertisements

प्रश्न

In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]

योग

उत्तर

Given: seg PD is a median of ΔPQR. Point T is the mid point of seg PD. 

To prove: `"PM"/"PR" = 1/3`

Construction: Draw seg DN || seg QM such that P-M-N and M-N-R.

Proof:

In ΔPDN,

Point T is the mid-point of seg PD.        ...(Given)

seg TM || seg DN           ...(Construction)

∴ Point M is the mid-point of seg PN.     ...(Converse of mid-point theorem)[P-M-N]

∴ PM = MN      ...(i)

In ΔQMR,

Point D is the mid-point of seg QR.       ...(Given)

seg DN || seg QM.        ...(Construction)

∴ Point N is the mid-point of seg MR.     ...(Converse of mid-point theorem)[M-N-R]

∴ RN = MN        ...(ii)

PM = MN = RN        ...[From (i) and (ii)]  ...(iii)

Now, 

PR = PM + MN + RN           

∴ PR = PM + PM + PM    ...[From (iii)]

∴ PR = 3PM

∴ `"PM"/"PR" = 1/3`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Quadrilaterals - Practice Set 5.5 [पृष्ठ ७३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
अध्याय 5 Quadrilaterals
Practice Set 5.5 | Q 4 | पृष्ठ ७३

संबंधित प्रश्न

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.


The following figure shows a trapezium ABCD in which AB // DC. P is the mid-point of AD and PR // AB. Prove that:

PR = `[1]/[2]` ( AB + CD)


In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.

Show that BE: EQ = 3: 1.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


ΔABC is an isosceles triangle with AB = AC. D, E and F are the mid-points of BC, AB and AC respectively. Prove that the line segment AD is perpendicular to EF and is bisected by it.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: ∠EFG = 90°


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
Show that AE and DF bisect each other.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔGEA ≅ ΔGFD


D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×