हिंदी

In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q. Show that BE: EQ = 3: 1. - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.

Show that BE: EQ = 3: 1.

योग

उत्तर

Construction: Draw DX || BQ

In ΔBCQ and ΔDCX,

∠BCQ = ∠DCX                ...(Common)

∠BQC = ∠DXC                ...(Corresponding angles)

So, ΔBCQ ∼ ΔDCX          ....(AA Similarity criterion)

⇒ `"BQ"/"DX" = "BC"/"DC" = "CQ"/"CX"`       ...(Corresponding sides are proportional.)

⇒ `"BQ"/"DX" = "2CD"/"CD"`         ...(D is the mid-point of BC)    

⇒ `"BQ"/"DX" = 2`                 ...(i)

Similarly, ΔAEQ ∼ ΔADX,

⇒ `"EQ"/"DX" = "AE"/"ED" = 1/2`      ...(E is the mid-point of AD)

That is `"EQ"/"DX" = 1/2`              ...(ii)

Dividing (i) by (ii), We get

⇒ `"BQ"/"EQ" = 4`

⇒ BE + EQ = 4EQ

⇒ BE = 3EQ

⇒ `"BQ"/"EQ" = 3/1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [पृष्ठ १५१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 16 | पृष्ठ १५१

संबंधित प्रश्न

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


In ΔABC, D is the mid-point of AB and E is the mid-point of BC.

Calculate:
(i) DE, if AC = 8.6 cm
(ii) ∠DEB, if ∠ACB = 72°


In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that

(i) R is the mid-point of BC, and

(ii) PR = `(1)/(2)"DB"`.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×