हिंदी

If the Quadrilateral Formed by Joining the Mid-points of the Adjacent Sides of Quadrilateral Abcd is a Rectangle, Show that the Diagonals Ac and Bd Intersect at Right Angle. - Mathematics

Advertisements
Advertisements

प्रश्न

If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.

योग

उत्तर

The figure is shown below

Let ABCD be a quadrilateral where P, Q, R, S are the midpoint of AB, BC, CD, DA.PQRS is a rectangle. Diagonal AC and BD intersect at point O. We need to show that AC and BD intersect at a right angle.

Proof:
PQ || AC, therefore ∠AOD = ∠PXO     ...[ Corresponding angle ]...(1)

Again BD || RQ, therefore ∠PXO = ∠RQX = 90°  ....[ Corresponding angle and angle of a rectangle ]...(2)

From (1) and (2) we get ,
∠AOD = 90°

Similarly, ∠AOB = ∠BOC = ∠DOC = 90°
Therefore diagonals AC and BD intersect at right angle.
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५४]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 9 | पृष्ठ १५४

संबंधित प्रश्न

ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see the given figure). Show that F is the mid-point of BC.


ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`

Let Abc Be an Isosceles Triangle in Which Ab = Ac. If D, E, F Be the Mid-points of the Sides Bc, Ca and a B Respectively, Show that the Segment Ad and Ef Bisect Each Other at Right Angles.


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


The following figure shows a trapezium ABCD in which AB // DC. P is the mid-point of AD and PR // AB. Prove that:

PR = `[1]/[2]` ( AB + CD)


In trapezium ABCD, AB is parallel to DC; P and Q are the mid-points of AD and BC respectively. BP produced meets CD produced at point E.

Prove that:

  1. Point P bisects BE,
  2. PQ is parallel to AB.

In a right-angled triangle ABC. ∠ABC = 90° and D is the midpoint of AC. Prove that BD = `(1)/(2)"AC"`.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: AB, if DC = 8 cm and PQ = 9.5 cm


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×