हिंदी

In Trapezium Abcd, Ab is Parallel to Dc; P and Q Are the Mid-points of Ad and Bc Respectively. Bp Produced Meets Cd Produced at Point E. Prove That: (I) Point P Bisects Be, - Mathematics

Advertisements
Advertisements

प्रश्न

In trapezium ABCD, AB is parallel to DC; P and Q are the mid-points of AD and BC respectively. BP produced meets CD produced at point E.

Prove that:

  1. Point P bisects BE,
  2. PQ is parallel to AB.
योग

उत्तर

The required figure is shown below

(i) From ΔPED and ΔABP,

PD = AP               ...[P is the mid-point of AD]

∠DPE = ∠APB      ....[Opposite angle]

∠PED = ∠PBA      ...[AB || CE]

∴ ΔPED ≅ ΔABP   ...[ASA postulate]

∴ EP = BP

(ii) In Δ ECB,

P is a mid point of BE and

Q is a mid point of BC

∴ PQ || CE   ...(i)  (by mid point theorem)

and CE || AB   ... (ii)

From equation (i) and (ii)

PQ || AB

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [पृष्ठ १५१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 12 | पृष्ठ १५१

संबंधित प्रश्न

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.


Fill in the blank to make the following statement correct

The triangle formed by joining the mid-points of the sides of an isosceles triangle is         


Fill in the blank to make the following statement correct:

The figure formed by joining the mid-points of consecutive sides of a quadrilateral is           


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×