हिंदी

Fill in the Blank to Make the Following Statement Correct the Triangle Formed by Joining the Mid-points of the Sides of an Isosceles Triangle is - Mathematics

Advertisements
Advertisements

प्रश्न

Fill in the blank to make the following statement correct

The triangle formed by joining the mid-points of the sides of an isosceles triangle is         

उत्तर

Isosceles

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 13.1 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angles


ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively
intersecting at P, Q and R. Prove that the perimeter of ΔPQR is double the perimeter of
ΔABC


In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.


In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.


D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.

In a triangle ABC, AD is a median and E is mid-point of median AD. A line through B and E meets AC at point F.

Prove that: AC = 3AF.


Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


Show that the quadrilateral formed by joining the mid-points of the adjacent sides of a square is also a square.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: AP = 2AR


P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. AQ intersects DP at S and BQ intersects CP at R. Show that PRQS is a parallelogram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×