हिंदी

Fill in the Blank to Make the Following Statement Correct: the Triangle Formed by Joining the Mid-points of the Sides of a Right Triangle is - Mathematics

Advertisements
Advertisements

प्रश्न

Fill in the blank to make the following statement correct:

The triangle formed by joining the mid-points of the sides of a right triangle is            

उत्तर

Right triangle

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 13.2 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.

In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


If L and M are the mid-points of AB, and DC respectively of parallelogram ABCD. Prove that segment DL and BM trisect diagonal AC.


In a right-angled triangle ABC. ∠ABC = 90° and D is the midpoint of AC. Prove that BD = `(1)/(2)"AC"`.


In ΔABC, D and E are the midpoints of the sides AB and AC respectively. F is any point on the side BC. If DE intersects AF at P show that DP = PE.


In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.

Remark: Figure is incorrect in Question


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

ST = `(1)/(3)"LS"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.