हिंदी

In δAbc, Be and Cf Are Medians. P is a Point on Be Produced Such that Be = Ep and Q is a Point on Cf Produced Such that Cf = Fq. Prove That: Qap is a Straight Line. - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.

योग

उत्तर


Since BE and CF are medians,
F is the mid-point of AB and E is the mid-point of AC.
Now, the line joining the mid-point of any two sides is parallel and half of the third side, we have
In ΔACQ,

EF || AQ and EF = `(1)/(2)"AQ"`    ....(i)

In ΔABP,

EF || AP and EF = `(1)/(2)"AP"`   ....(ii)

From (i) and (ii), we get AP || AQ (both are parallel to EF)
As AP andAQ are parallel and have a common point A, this is possible only if QAP is a straight line.
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 5.1

संबंधित प्रश्न

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.


Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×