Advertisements
Advertisements
प्रश्न
The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.
उत्तर
The figure is shown below
Let ABCD be a quadrilateral where P, Q, R, S are the midpoint of AB, BC, CD, DA. Diagonal AC and BD intersect at a right angle at point O. We need to show that PQRS is a rectangle
Proof:
From and ΔABC and ΔADC
2PQ = AC and PQ || AC …..(1)
2RS = AC and RS || AC …..(2)
From (1) and (2) we get,
PQ = RS and PQ || RS
Similarly, we can show that PS=RQ and PS || RQ
Therefore PQRS is a parallelogram.
Now PQ || AC, therefore ∠AOD = ∠PXO = 90° ...[ Corresponding angel ]
Again BD || RQ, therefore ∠PXO = ∠RQX = 90° ...[ Corresponding angel]
Similarly ∠QRS = ∠RSP = ∠SPQ = 90°
Therefore PQRS is a rectangle.
Hence proved.
APPEARS IN
संबंधित प्रश्न
ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.
BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.
Fill in the blank to make the following statement correct
The triangle formed by joining the mid-points of the sides of an isosceles triangle is
Fill in the blank to make the following statement correct:
The figure formed by joining the mid-points of consecutive sides of a quadrilateral is
In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.
L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.
In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm
In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.
D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.
D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.