मराठी

In δAbc, Be and Cf Are Medians. P is a Point on Be Produced Such that Be = Ep and Q is a Point on Cf Produced Such that Cf = Fq. Prove That: Qap is a Straight Line. - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.

बेरीज

उत्तर


Since BE and CF are medians,
F is the mid-point of AB and E is the mid-point of AC.
Now, the line joining the mid-point of any two sides is parallel and half of the third side, we have
In ΔACQ,

EF || AQ and EF = `(1)/(2)"AQ"`    ....(i)

In ΔABP,

EF || AP and EF = `(1)/(2)"AP"`   ....(ii)

From (i) and (ii), we get AP || AQ (both are parallel to EF)
As AP andAQ are parallel and have a common point A, this is possible only if QAP is a straight line.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 5.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×