Advertisements
Advertisements
प्रश्न
Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.
उत्तर
Given: In a square ABCD, P, Q, R and S are the mid-points of AB, BC, CD and DA, respectively.
To show: PQRS is a square.
Construction: Join AC and BD.
Proof: Since, ABCD is a square.
∴ AB = BC = CD = AD
Also, P, Q, R and S are the mid-points of AB, BC, CD and DA, respectively.
Then, in ΔADC, SR || AC
And SR = `1/2`AC [By mid-point theorem] ...(i)
In ΔABC, PQ || AC
And PQ = `1/2`AC ...(ii)
From equations (i) and (ii),
SR || PQ and SR = PQ = `1/2`AC ...(iii)
Similarly, SP || BD and BD || RQ
∴ SP || RQ and SP = `1/2`BD
And RQ = `1/2`BD
∴ SP = RQ = `1/2`BD
Since, diagonals of a square bisect each other at right angle.
∴ AC = BD
⇒ SP = RQ = `1/2`AC ...(iv)
From equations (iii) and (iv),
SR = PQ = SP = RQ ...[All side are equal]
Now, in quadrilateral OERF,
OE || FR and OF || ER
∴ ∠EOF = ∠ERF = 90°
Hence, PQRS is a square.
Hence proved.
APPEARS IN
संबंधित प्रश्न
ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angles
In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.
A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that
CQ = `[1]/[4]`AC. PQ produced meets BC at R.
Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB
The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.
In a right-angled triangle ABC. ∠ABC = 90° and D is the midpoint of AC. Prove that BD = `(1)/(2)"AC"`.
In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: Q A and P are collinear.
In the given figure, T is the midpoint of QR. Side PR of ΔPQR is extended to S such that R divides PS in the ratio 2:1. TV and WR are drawn parallel to PQ. Prove that T divides SU in the ratio 2:1 and WR = `(1)/(4)"PQ"`.
The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.
E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = `1/2` (AB + CD).
[Hint: Join BE and produce it to meet CD produced at G.]