हिंदी

In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB. - Mathematics

Advertisements
Advertisements

प्रश्न

In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.

संक्षेप में उत्तर

उत्तर

In Δ BEF and  ΔCED

`∠`BEF = `∠`CED         [Verified opposite angle]

BE = CE                  [ ∵ E is the mid-point of BC]

`∠`EBF = `∠`ECD        [∵ Alternate interior angles are equal]

∴ ∇ BEF ≅  Δ CED         [Angle side angle congruence]

  ∴ BF = CD                 [Corresponding Parts of Congruent Triangles]

AF = AB + AF

AF = AB + AB

AF = 2 AB

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.2 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.2 | Q 10 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.


In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.


D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.

In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that

(i) R is the mid-point of BC, and

(ii) PR = `(1)/(2)"DB"`.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: AP = 2AR


AD is a median of side BC of ABC. E is the midpoint of AD. BE is joined and produced to meet AC at F. Prove that AF: AC = 1 : 3.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×