हिंदी

Abc is a Triangle and Through A, B, C Lines Are Drawn Parallel to Bc, Ca and Ab Respectively Intersecting at P, Q and R. Prove that the Perimeter of δPqr is Double the Perimeter of δAbc - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively
intersecting at P, Q and R. Prove that the perimeter of ΔPQR is double the perimeter of
ΔABC

उत्तर

Clearly ABCQ and ARBC are parallelograms.

∴ BC = AQ and BC = AR

⇒ AQ = AR

⇒ A is the midpoint of QR .

Similarly B and C are the midpoints of PR and PQ respectively

∴ AB = `1/2` PQ, BC = `1/2` QR, CA = `1/2 `PR

⇒ PQ = 2AB,QR = 2BC and PR = 2CA

⇒ PQ + QR + RP = 2( AB + BC + CA)

⇒ Perimeter of DPQR = 2   [Perimeter of DABC ]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 14 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let Abc Be an Isosceles Triangle in Which Ab = Ac. If D, E, F Be the Mid-points of the Sides Bc, Ca and a B Respectively, Show that the Segment Ad and Ef Bisect Each Other at Right Angles.


Show that the line segments joining the mid-points of the opposite sides of a quadrilateral
bisect each other.


D, E, and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC.

Prove that ΔDEF is also isosceles.


In a triangle ABC, AD is a median and E is mid-point of median AD. A line through B and E meets AC at point F.

Prove that: AC = 3AF.


A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that

CQ = `[1]/[4]`AC. PQ produced meets BC at R.

Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB


If L and M are the mid-points of AB, and DC respectively of parallelogram ABCD. Prove that segment DL and BM trisect diagonal AC.


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: F is the mid-point of BC.


In ΔABC, X is the mid-point of AB, and Y is the mid-point of AC. BY and CX are produced and meet the straight line through A parallel to BC at P and Q respectively. Prove AP = AQ.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: Q A and P are collinear.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×