Advertisements
Advertisements
प्रश्न
D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles.
उत्तर
Given: In a ΔABC, D, E and F are respectively the mid-points of the sides AB, BC and CA.
To prove: ΔABC is divided into four congruent triangles.
Proof: Since, ABC is a triangle and D, E and F are the mid-points of sides AB, BC and CA, respectively.
Then, AD = BD =
And AF = CF =
Now, using the mid-point theorem,
EF || AB and EF =
ED || AC and ED =
And DF || BC and DF =
In ΔADF and ΔEFD,
AD = EF
AF = DE
And DF = FD ...[Common]
∴ ΔADF ≅ ΔEFD ...[By SSS congruence rule]
Similarly, ΔDEF ≅ ΔEDB
And ΔDEF ≅ ΔCFE
So, ΔABC is divided into four congruent triangles.
Hence proved.
APPEARS IN
संबंधित प्रश्न
ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.
In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.
Show that BE: EQ = 3: 1.
In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:
- M, A, and N are collinear.
- A is the mid-point of MN.
In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ =
(i) R is the mid-point of BC, and
(ii) PR =
In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: Q A and P are collinear.
In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.
Remark: Figure is incorrect in Question
The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.
P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square.
E is the mid-point of a median AD of ∆ABC and BE is produced to meet AC at F. Show that AF =