हिंदी

In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that: M, A, and N are collinear. A is the mid-point of MN. - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.
योग

उत्तर

The figure is shown below

(i) In ΔAQN & ΔBQC 

AQ = QB (Given)

∠AQN = ∠BQC                       

QN = QC 

∴ ΔAQN ≅ ΔBQC                     ...[ by SAS  ] 

∴ ∠QAN = ∠QBC                   ...(1)

And BC = AN ……(2)

Similarly, ΔAPM ≅ ΔCPB           .....[by SAS] 

∠PAM = ∠PCB                      ...(3)  [by CPTC]        

And BC = AM                          ….( 4 )

Now In ΔABC,

∠ABC + ∠ACB + ∠BAC = 180°

∠QAN + ∠PAM + ∠BAC = 180°   ...[ (1), (2) we get ]

Therefore M, A, N are collinear.

(ii) From (3) and (4) MA = NA

Hence A is the midpoint of MN.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५४]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 4 | पृष्ठ १५४

संबंधित प्रश्न

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


In ΔABC, D is the mid-point of AB and E is the mid-point of BC.

Calculate:
(i) DE, if AC = 8.6 cm
(ii) ∠DEB, if ∠ACB = 72°


Show that the quadrilateral formed by joining the mid-points of the adjacent sides of a square is also a square.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
Show that AE and DF bisect each other.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: EGFH is a parallelogram.


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×