मराठी

In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that: M, A, and N are collinear. A is the mid-point of MN. - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.
बेरीज

उत्तर

The figure is shown below

(i) In ΔAQN & ΔBQC 

AQ = QB (Given)

∠AQN = ∠BQC                       

QN = QC 

∴ ΔAQN ≅ ΔBQC                     ...[ by SAS  ] 

∴ ∠QAN = ∠QBC                   ...(1)

And BC = AN ……(2)

Similarly, ΔAPM ≅ ΔCPB           .....[by SAS] 

∠PAM = ∠PCB                      ...(3)  [by CPTC]        

And BC = AM                          ….( 4 )

Now In ΔABC,

∠ABC + ∠ACB + ∠BAC = 180°

∠QAN + ∠PAM + ∠BAC = 180°   ...[ (1), (2) we get ]

Therefore M, A, N are collinear.

(ii) From (3) and (4) MA = NA

Hence A is the midpoint of MN.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५४]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 4 | पृष्ठ १५४

संबंधित प्रश्‍न

Fill in the blank to make the following statement correct:

The figure formed by joining the mid-points of consecutive sides of a quadrilateral is           


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find DE, if AB = 8 cm


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find ∠FDB if ∠ACB = 115°.


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


ΔABC is an isosceles triangle with AB = AC. D, E and F are the mid-points of BC, AB and AC respectively. Prove that the line segment AD is perpendicular to EF and is bisected by it.


In ΔABC, X is the mid-point of AB, and Y is the mid-point of AC. BY and CX are produced and meet the straight line through A parallel to BC at P and Q respectively. Prove AP = AQ.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×