English

D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles. - Mathematics

Advertisements
Advertisements

Question

D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles.

Sum

Solution

Given: In a ΔABC, D, E and F are respectively the mid-points of the sides AB, BC and CA.

To prove: ΔABC is divided into four congruent triangles.

Proof: Since, ABC is a triangle and D, E and F are the mid-points of sides AB, BC and CA, respectively.


Then, AD = BD = `1/2`AB, BE = EC = `1/2`BC

And AF = CF = `1/2`AC

Now, using the mid-point theorem,

EF || AB and EF = `1/2`AB = AD = BD

ED || AC and ED = `1/2`AC = AF = CF

And DF || BC and DF = `1/2`BC = BE = CE

In ΔADF and ΔEFD,

AD = EF

AF = DE

And DF = FD   ...[Common]

∴ ΔADF ≅ ΔEFD   ...[By SSS congruence rule]

Similarly, ΔDEF ≅ ΔEDB

And ΔDEF ≅ ΔCFE

So, ΔABC is divided into four congruent triangles.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.4 [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.4 | Q 16. | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.


The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.

D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.

In a triangle ABC, AD is a median and E is mid-point of median AD. A line through B and E meets AC at point F.

Prove that: AC = 3AF.


If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find DE, if AB = 8 cm


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×