Advertisements
Advertisements
Question
ABCD is a rectangle in which diagonal BD bisects ∠B. Show that ABCD is a square.
Solution
Given: In a rectangle ABCD, diagonal BD bisects ∠B.
Construct: Join AC.
To show: ABCD is a square.
Proof: In ΔBAD and ΔBCD,
∠ABD = ∠CBD ...[Given]
∠A = ∠C ...[Each 90°]
And BD = BD ...[Common side]
∴ ΔBAD ≅ ΔBCD ...[By AAS congruence rule]
∴ AB = BC
And AD = CD [By CPCT rule] ...(i)
But in rectangle ABCD, opposite sides are equal.
∴ AB = CD
And BC = AD ...(ii)
From equations (i) and (ii),
AB = BC = CD = DA.
So, ABCD is a square.
Hence proved.
APPEARS IN
RELATED QUESTIONS

Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.
Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer.
Diagonals of a quadrilateral ABCD bisect each other. If ∠A = 35º, determine ∠B.
In a parallelogram ABCD, AB = 10 cm and AD = 6 cm. The bisector of ∠A meets DC in E. AE and BC produced meet at F. Find the length of CF.
P and Q are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. Show that PQ is bisected at O.
P is the mid-point of the side CD of a parallelogram ABCD. A line through C parallel to PA intersects AB at Q and DA produced at R. Prove that DA = AR and CQ = QR.
If diagonals of a quadrilateral bisect each other, it must be a parallelogram.
The point of intersection of diagonals of a quadrilateral divides one diagonal in the ratio 1:2. Can it be a parallelogram? Why or why not?
Two sticks each of length 7 cm are crossing each other such that they bisect each other at right angles. What shape is formed by joining their end points? Give reason.