Advertisements
Advertisements
प्रश्न
ABCD is a rectangle in which diagonal BD bisects ∠B. Show that ABCD is a square.
उत्तर
Given: In a rectangle ABCD, diagonal BD bisects ∠B.
Construct: Join AC.
To show: ABCD is a square.
Proof: In ΔBAD and ΔBCD,
∠ABD = ∠CBD ...[Given]
∠A = ∠C ...[Each 90°]
And BD = BD ...[Common side]
∴ ΔBAD ≅ ΔBCD ...[By AAS congruence rule]
∴ AB = BC
And AD = CD [By CPCT rule] ...(i)
But in rectangle ABCD, opposite sides are equal.
∴ AB = CD
And BC = AD ...(ii)
From equations (i) and (ii),
AB = BC = CD = DA.
So, ABCD is a square.
Hence proved.
APPEARS IN
संबंधित प्रश्न
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32º and ∠AOB = 70º, then ∠DBC is equal to ______.
Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.
Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer.
E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. Show that BFDE is a parallelogram.
In a parallelogram ABCD, AB = 10 cm and AD = 6 cm. The bisector of ∠A meets DC in E. AE and BC produced meet at F. Find the length of CF.
A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus.
In the following figure, AB || DE, AB = DE, AC || DF and AC = DF. Prove that BC || EF and BC = EF.
If diagonals of a quadrilateral bisect each other, it must be a parallelogram.
Two sticks each of length 5 cm are crossing each other such that they bisect each other. What shape is formed by joining their endpoints? Give reason.
Two sticks each of length 7 cm are crossing each other such that they bisect each other at right angles. What shape is formed by joining their end points? Give reason.