English

D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E. Prove that BDFE is a parallelogram Find AB, if EF = 4.8 cm. - Mathematics

Advertisements
Advertisements

Question

D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.
Sum

Solution

The required figure is shown below

(i) Since F is the midpoint and EF || AB.

Therefore E is the midpoint of BC.

So, `BE = 1/2BC and EF = 1/2AB`   …..(1)

Since D and F are the mid-points of AB and AC

Therefore DE || AC.

So, `DF = 1/2BC and DB = 1/2"AB"`  …..(2)

From (1), (2) we get

BE = DF and BD = EF

Hence  BDEF is a parallelogram.

(ii) Since

AB = 2EF

= 2 × 4.8

= 9.6 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [Page 151]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 14 | Page 151

RELATED QUESTIONS

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


In Fig. below, triangle ABC is right-angled at B. Given that AB = 9 cm, AC = 15 cm and D,
E are the mid-points of the sides AB and AC respectively, calculate
(i) The length of BC (ii) The area of ΔADE.

 


In trapezium ABCD, sides AB and DC are parallel to each other. E is mid-point of AD and F is mid-point of BC.
Prove that: AB + DC = 2EF.


In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: DC, if AB = 20 cm and PQ = 14 cm


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: BC = 4QR


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.

Remark: Figure is incorrect in Question


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

ST = `(1)/(3)"LS"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×