English

In a ∆Abc, D, E and F Are, Respectively, the Mid-points of Bc, Ca and Ab. If the Lengths of Side Ab, Bc and Ca Are 7 Cm, 8 Cm and 9 Cm, Respectively, Find the Perimeter of ∆Def. - Mathematics

Advertisements
Advertisements

Question

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.

Solution

Given that

AB = 7cm, BC = 8cm, AC = 9cm .

In  ΔABC

∴ F and E are the midpoint of AB and AC

∴EF = `1/2` BC     [Mid-points theorem]

Similarly

DF = `1/2` AC, DE = `1/2` AB

Perimeter of ΔDEF = DE + EF + DF

= `1/2` AB + `1/2` BC `1/2`AC

= `1/2`× 7 + `1/2` × 8 +` 1 /2`× 9

= 3.5 + 4 + 4.5 = 12cm

Perimeter of ΔDEF = 12cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 1 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.


ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see the given figure). Show that F is the mid-point of BC.


Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.


In the below Fig, ABCD and PQRC are rectangles and Q is the mid-point of Prove thaT

i) DP = PC (ii) PR = `1/2` AC


In the given figure, points X, Y, Z are the midpoints of side AB, side BC and side AC of ΔABC respectively. AB = 5 cm, AC = 9 cm and BC = 11 cm. Find the length of XY, YZ, XZ.


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


In ∆ABC, AB = 5 cm, BC = 8 cm and CA = 7 cm. If D and E are respectively the mid-points of AB and BC, determine the length of DE.


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×