English

In a Triangle ∠Abc, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the Measures of the Angles of the Triangle Formed by Joining the Mid-points of the Sides of this Triangle. - Mathematics

Advertisements
Advertisements

Question

In a triangle ∠ABC, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the measures of the angles of

the triangle formed by joining the mid-points of the sides of this triangle. 

Solution

In ΔABC

D and E are midpoints of AB and BC

By midpoint theorem

∴ DE || AC, DE = `1/2` AC.

F is the midpoint of AC

Then, DE = `1/2` AC = CF

In a quadrilateral DECF

DE || AC, DE = CF

Hence DECF is a parallelogram

∴`∠`C = `∠`D = 70°                        [Opposite sides of parallelogram]

Similarly

BEFD is a parallelogram, `∠`B = `∠`F = 60°

ADEF is a parallelogram, `∠`A = `∠`E = 50°

∴Angles of ΔDEF

`∠`D = 70°, `∠`E = 50°, `∠`F = 60°

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 2 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


D, E, and F are the mid-points of the sides AB, BC, and CA respectively of ΔABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.


In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.

In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: ∠EFG = 90°


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, D and E are the midpoints of the sides AB and AC respectively. F is any point on the side BC. If DE intersects AF at P show that DP = PE.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

ST = `(1)/(3)"LS"`


D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×