English

In a Triangle, P, Q and R Are the Mid-points of Sides Bc, Ca and Ab Respectively. If Ac = 21 Cm, Bc = 29 Cm and Ab = 30 Cm, Find the Perimeter of the Quadrilateral Arpq. - Mathematics

Advertisements
Advertisements

Question

In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

Solution

In ΔABC

R and P are the midpoint of AB and BC

∴RP || AC, RP = `1/2` AC        [By midpoint theorem]

In a quadrilateral

[A pair of side is parallel and equal]

RP || AQ, RP = AQ

∴RPQA is a parallelogram

AR = `1/2` AB = `1/2 ` × 30 = 15cm 

AR = QP = 15                                                     [  ∵   Opposite sides are equal] 

⇒ RP = `1/2` AC = `1/2` × 21 = 10 .5cm           [   ∵  Opposite sides are equal] 

Now,

Perimeter of ARPQ = AR + QP + RP + AQ

= 15 +15 +10.5 +10.5

= 51cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 3 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`

ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


In the below Fig, ABCD and PQRC are rectangles and Q is the mid-point of Prove thaT

i) DP = PC (ii) PR = `1/2` AC


D, E, and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC.

Prove that ΔDEF is also isosceles.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


In trapezium ABCD, AB is parallel to DC; P and Q are the mid-points of AD and BC respectively. BP produced meets CD produced at point E.

Prove that:

  1. Point P bisects BE,
  2. PQ is parallel to AB.

In the figure, give below, 2AD = AB, P is mid-point of AB, Q is mid-point of DR and PR // BS. Prove that:
(i) AQ // BS
(ii) DS = 3 Rs.


In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that

(i) R is the mid-point of BC, and

(ii) PR = `(1)/(2)"DB"`.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: AB, if DC = 8 cm and PQ = 9.5 cm


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×