English

In the Given Figure, Abcd is a Trapezium. P and Q Are the Midpoints of Non-parallel Side Ad and Bc Respectively. Find: Dc, If Ab = 20 Cm and Pq = 14 Cm - Mathematics

Advertisements
Advertisements

Question

In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: DC, if AB = 20 cm and PQ = 14 cm

Sum

Solution

Let us draw a diagonal AC which meets PQ at O as shown below:

Given AB = 20 cm and PQ = 14 cm
In ΔABC,

OQ = `(1)/(2)"AB"`     ....(Mid-point Theorem)

⇒ OP = `(1)/(2) xx 20` = 10 cm

Now, 
OP = PQ - OQ
⇒ OP = 14 - 10
= 4 cm

In ΔADC,

OP = `(1)/(2)"DC"`    ....(Mid-point Theorem)

⇒ DC = 2 x OP
= 2 x 4 
= 8 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 15.3

RELATED QUESTIONS

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`

In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.


In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.

Show that BE: EQ = 3: 1.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


In ∆ABC, AB = 5 cm, BC = 8 cm and CA = 7 cm. If D and E are respectively the mid-points of AB and BC, determine the length of DE.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×