English
Maharashtra State BoardSSC (English Medium) 9th Standard

In the Figure, □ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = ABDC12(AB+DC). - Geometry

Advertisements
Advertisements

Question

In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.

Sum

Solution

Given: `square`ABCD is a trapezium.

To prove: PQ || AB and PQ = `1/2`(AB + DC)

Construction: Extend line AQ in such a way that, on extending side DC, intersect it at point R.

Proof:

seg AB || seg DC      ...(Given)

and seg BC is their transversal.

∴ ∠ABC ≅ ∠RCB       ...(Alternate angles)

∴ ∠ABQ ≅ ∠RCQ       ...(i)   ...(B-Q-C)

In ∆ABQ and ∆RCQ,

∠ABQ ≅∠RCQ       ...[From (i)]

seg BQ ≅ seg CQ      ...(Q is the midpoint of seg BC)

∠BQA ≅ ∠CQR        ...(Vertically opposite angles)

∴ ∆ABQ ≅ ∆RCQ        ...(ASA test)

seg AB ≅ seg CR       ...(c.s.c.t.)  ...(ii)

seg AQ ≅ seg RQ      ...(c.s.c.t.)  ...(iii)

In ∆ADR,

Point P is the midpoint of line AD.       ...(Given)

Point Q is the midpoint of line AR.      ...[From (iii)]

∴ seg PQ || side DR        ...(Midpoint Theorem)

∴ seg PQ || side DC       ...(iv)    ...(D-C-R)

∴ side AB || side DC       ...(v)    ...(Given)

∴ seg PQ || side AB      ...[From (iv) and (v)]

PQ = `1/2` DR       ...(Midpoint Theorem)

= `1/2` (DC + CR)

= `1/2` (DC + AB)        ...[From (ii)]

∴ PQ = `1/2` (AB + DC)

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Quadrilaterals - Problem Set 5 [Page 74]

APPEARS IN

RELATED QUESTIONS

ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.


BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


D, E, and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC.

Prove that ΔDEF is also isosceles.


The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.

The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: 2EF = BD.


The diagonals AC and BD of a quadrilateral ABCD intersect at right angles. Prove that the quadrilateral formed by joining the midpoints of quadrilateral ABCD is a rectangle.


In the given figure, T is the midpoint of QR. Side PR of ΔPQR is extended to S such that R divides PS in the ratio 2:1. TV and WR are drawn parallel to PQ. Prove that T divides SU in the ratio 2:1 and WR = `(1)/(4)"PQ"`.


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×