English
Maharashtra State BoardSSC (English Medium) 9th Standard

In the adjacent figure, □ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB. - Geometry

Advertisements
Advertisements

Question

In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.

Sum

Solution

Given: `square`ABCD is a trapezium. AB || DC

Points M and N are the midpoints of diagonals AC and DB respectively.  

To prove: MN || AB

Construction: Draw line DM which intersects side AB at point T.

Proof:

side DC || side AB      …(Given)

And seg AC is a transversal line.

∴ ∠DAC ≅ ∠BAC       ...(alternate angles)

∴ ∠DCM ≅ ∠TAM      ...(i)   ...(A-M-C and A-T-B)

In ∆DCM and ∆TAM,

∠DCM ≅ ∠TAM        ...[From (i)]

seg MC ≅ seg MA       ...(Point M is the midpoint of seg AC.)

∠DCM ≅ ∠TAM      ...(Vertically opposite angles)

∴ ∆DCM ≅ ∆TAM      ...(ASA test)

seg DM ≅ seg MT       ...(c.s.c.t)  ...(ii)

In ∆DTB,

Point N is the midpoint of line DB.     ...(Given)

Point M is the midpoint of line DT.     ...[From (ii)]

∴ seg MN || side TB    ...(Midpoint Theorem)

∴ seg MN || seg AB   ...(A-T-B)

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Quadrilaterals - Problem Set 5 [Page 74]

APPEARS IN

RELATED QUESTIONS

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


In a triangle ABC, AD is a median and E is mid-point of median AD. A line through B and E meets AC at point F.

Prove that: AC = 3AF.


In the figure, give below, 2AD = AB, P is mid-point of AB, Q is mid-point of DR and PR // BS. Prove that:
(i) AQ // BS
(ii) DS = 3 Rs.


In the given figure, AD and CE are medians and DF // CE.
Prove that: FB = `1/4` AB.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔGEA ≅ ΔGFD


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: Q A and P are collinear.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×