मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

In the adjacent figure, □ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB. - Geometry

Advertisements
Advertisements

प्रश्न

In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.

बेरीज

उत्तर

Given: `square`ABCD is a trapezium. AB || DC

Points M and N are the midpoints of diagonals AC and DB respectively.  

To prove: MN || AB

Construction: Draw line DM which intersects side AB at point T.

Proof:

side DC || side AB      …(Given)

And seg AC is a transversal line.

∴ ∠DAC ≅ ∠BAC       ...(alternate angles)

∴ ∠DCM ≅ ∠TAM      ...(i)   ...(A-M-C and A-T-B)

In ∆DCM and ∆TAM,

∠DCM ≅ ∠TAM        ...[From (i)]

seg MC ≅ seg MA       ...(Point M is the midpoint of seg AC.)

∠DCM ≅ ∠TAM      ...(Vertically opposite angles)

∴ ∆DCM ≅ ∆TAM      ...(ASA test)

seg DM ≅ seg MT       ...(c.s.c.t)  ...(ii)

In ∆DTB,

Point N is the midpoint of line DB.     ...(Given)

Point M is the midpoint of line DT.     ...[From (ii)]

∴ seg MN || side TB    ...(Midpoint Theorem)

∴ seg MN || seg AB   ...(A-T-B)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Quadrilaterals - Problem Set 5 [पृष्ठ ७४]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
पाठ 5 Quadrilaterals
Problem Set 5 | Q 9 | पृष्ठ ७४

संबंधित प्रश्‍न

In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


Fill in the blank to make the following statement correct

The triangle formed by joining the mid-points of the sides of an isosceles triangle is         


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


In the given figure, AD and CE are medians and DF // CE.
Prove that: FB = `1/4` AB.


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


ΔABC is an isosceles triangle with AB = AC. D, E and F are the mid-points of BC, AB and AC respectively. Prove that the line segment AD is perpendicular to EF and is bisected by it.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

ST = `(1)/(3)"LS"`


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×