मराठी

P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. - Mathematics

Advertisements
Advertisements

प्रश्न

P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square.

बेरीज

उत्तर

Given: In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively.

Also, AC = BD and AC ⊥ BD.

To prove: PQRS is a square.

Proof: Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

SR || AC and SR = `1/2` AC   ...(i)


In ΔABC, P and Q are the mid-points of AB and BC, then by mid-point theorem,

PQ || AC and PQ = `1/2` AC  ...(ii)

From equations (i) and (ii),

PQ || SR and PQ = SR = `1/2` AC  ...(iii)

Similarly, in ΔABD, by mid-point theorem,

SP || BD and SP = `1/2` BD = `1/2` AC  [Given, AC = BD] ...(iv)

And ΔBCD, by mid-point theorem,

RQ || BD and RQ = `1/2` BD = `1/2` AC  [Given, BD = AC] ...(v)

From equations (iv) and (v),

SP = RQ = `1/2` AC  ...(vi)

From equations (iii) and (vi),

PQ = SR = SP = RQ

Thus, all four sides are equal.

Now, in quadrilateral OERF,

OE || FR and OF || ER

∴ ∠EOF = ∠ERF = 90°  ...[∵ AC ⊥ DB ⇒ ∠DOC = ∠EOF = 90° as opposite angles of a parallelogram]

∴ ∠QRS = 90°

Similarly, ∠RQS = 90°

So, PQRS is a square.

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Quadrilaterals - Exercise 8.4 [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 8 Quadrilaterals
Exercise 8.4 | Q 5. | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.


In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,

  1. SL = LR
  2. LN = `1/2`SQ


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


The diagonals AC and BD of a quadrilateral ABCD intersect at right angles. Prove that the quadrilateral formed by joining the midpoints of quadrilateral ABCD is a rectangle.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD such that AC ⊥ BD. Prove that PQRS is a rectangle.


Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×