English

P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. - Mathematics

Advertisements
Advertisements

Question

P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square.

Sum

Solution

Given: In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively.

Also, AC = BD and AC ⊥ BD.

To prove: PQRS is a square.

Proof: Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

SR || AC and SR = `1/2` AC   ...(i)


In ΔABC, P and Q are the mid-points of AB and BC, then by mid-point theorem,

PQ || AC and PQ = `1/2` AC  ...(ii)

From equations (i) and (ii),

PQ || SR and PQ = SR = `1/2` AC  ...(iii)

Similarly, in ΔABD, by mid-point theorem,

SP || BD and SP = `1/2` BD = `1/2` AC  [Given, AC = BD] ...(iv)

And ΔBCD, by mid-point theorem,

RQ || BD and RQ = `1/2` BD = `1/2` AC  [Given, BD = AC] ...(v)

From equations (iv) and (v),

SP = RQ = `1/2` AC  ...(vi)

From equations (iii) and (vi),

PQ = SR = SP = RQ

Thus, all four sides are equal.

Now, in quadrilateral OERF,

OE || FR and OF || ER

∴ ∠EOF = ∠ERF = 90°  ...[∵ AC ⊥ DB ⇒ ∠DOC = ∠EOF = 90° as opposite angles of a parallelogram]

∴ ∠QRS = 90°

Similarly, ∠RQS = 90°

So, PQRS is a square.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.4 [Page 82]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.4 | Q 5. | Page 82

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.


ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: BC = 4QR


In the given figure, T is the midpoint of QR. Side PR of ΔPQR is extended to S such that R divides PS in the ratio 2:1. TV and WR are drawn parallel to PQ. Prove that T divides SU in the ratio 2:1 and WR = `(1)/(4)"PQ"`.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×