English

P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus. - Mathematics

Advertisements
Advertisements

Question

P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.

Sum

Solution

Given: In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively.

Also, AC = BD

To prove: PQRS is a rhombus.


Proof: In ΔADC, S and R are the mid-points of AD and DC respectively.

Then, by mid-point theorem.

SR || AC and SR = `1/2` AC  ...(i)

In ΔABC, P and Q are the mid-points of AB and BC respectively.

Then, by mid-point theorem.

PQ || AC and PQ = `1/2` AC  ...(ii)

From equations (i) and (ii),

SR = PQ = `1/2` AC  ...(iii)

Similarly, in ΔBCD,

RQ || BD and RQ = `1/2` BD  ...(iv)

And in ΔBAD,

SP || BD and SP = `1/2` BD  ...(v)

From equations (iv) and (v),

SP = RQ = `1/2` BD = `1/2` AC  [Given, AC = BD] ...(vi)

From equations (iii) and (vi),

SR = PQ = SP = RQ

It shows that all sides of a quadrilateral PQRS are equal.

Hence, PQRS is a rhombus.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.4 [Page 82]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.4 | Q 3. | Page 82

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.


ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`

ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angles


In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.


In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.

In ΔABC, AB = 12 cm and AC = 9 cm. If M is the mid-point of AB and a straight line through M parallel to AC cuts BC in N, what is the length of MN?


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that

(i) R is the mid-point of BC, and

(ii) PR = `(1)/(2)"DB"`.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×