English

D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______. - Mathematics

Advertisements
Advertisements

Question

D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.

Options

  • a square

  • a rectangle

  • a rhombus

  • a parallelogram

MCQ
Fill in the Blanks

Solution

D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is a parallelogram.

Explanation:


In ΔABC, D and E are the mid-points of sides AB and AC, respectively.

By mid-point theorem,

DE || BC  ...(i)

DE = `1/2` BC

Then, DE = `1/2` [BP + PO + OQ + QC]

DE = `1/2` [2PO + 2OQ]  ...[Since, P and Q are the mid-points of OB and OC respectively]

⇒ DE = PO + OQ

⇒ DE = PQ

Now, in ΔAOC, Q and E are the mid-points of OC and AC respectively.

∴ EQ || AO and EQ = `1/2` AO  [By mid-point theorem]  ...(iii)

Similarly, in ΔABO,

PD || AO and PD = `1/2` AO  [By mid-point theorem]  ...(iv)

From equations (iii) and (iv),

EQ || PD and EQ = PD

From equations (i) and (ii),

 DE || BC (or DE || PQ) and DE = PQ

Hence, DEQP is a parallelogram.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.1 [Page 74]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.1 | Q 10. | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is a diagonal. Show that:

  1. SR || AC and SR = `1/2AC`
  2. PQ = SR
  3. PQRS is a parallelogram.


In Fig. below, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are
respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.


In the below Fig, ABCD and PQRC are rectangles and Q is the mid-point of Prove thaT

i) DP = PC (ii) PR = `1/2` AC


Fill in the blank to make the following statement correct:

The triangle formed by joining the mid-points of the sides of a right triangle is            


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find DE, if AB = 8 cm


The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: DC, if AB = 20 cm and PQ = 14 cm


D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×