English

In Triangle Abc, P is the Mid-point of Side Bc. a Line Through P and Parallel to Ca Meets Ab at Point Q, and a Line Through Q and Parallel to Bc Meets Median Ap at Point R. Prove that : - Mathematics

Advertisements
Advertisements

Question

In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR

Sum

Solution

The required figure is shown below

From the figure, it is seen that P is the midpoint of BC and PQ || AC and QR || BC
Therefore Q is the midpoint of AB and R is the midpoint of AP
(i) Therefore AP=2AR
(ii) Here we increase QR so that it cuts AC at S as shown in the figure.
(iii) From triangle PQR and triangle ARS
∠PQR = ∠ARS                   ...( Opposite angle )
PR = AR
PQ = AS                            ...[ PQ = AS = `1/2`AC ]
ΔPQR ≅ ΔARS                   ...( SAS Postulate )
Therefore QR = RS
Now,
BC = 2QS
BC = 2 x 2QR
BC = 4QR 
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [Page 151]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 11 | Page 151

RELATED QUESTIONS

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is a diagonal. Show that:

  1. SR || AC and SR = `1/2AC`
  2. PQ = SR
  3. PQRS is a parallelogram.


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.

In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


In trapezium ABCD, sides AB and DC are parallel to each other. E is mid-point of AD and F is mid-point of BC.
Prove that: AB + DC = 2EF.


In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×