English

In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median. - Mathematics

Advertisements
Advertisements

Question

In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.

Sum

Solution

Since AD is the median of ΔABC, then BD = DC.

Given, DE || AB and DE are drawn from the midpoint of BC i.e. D, then

by the converse of mid-point theorem,

it bisects the third side which in this case is AC at E.

Therefore, E is the mid point of AC.

Hence, BE is the median of ΔABC.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [Page 154]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 14 | Page 154

RELATED QUESTIONS

ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively
intersecting at P, Q and R. Prove that the perimeter of ΔPQR is double the perimeter of
ΔABC


The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.


The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.


In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that

(i) R is the mid-point of BC, and

(ii) PR = `(1)/(2)"DB"`.


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: EGFH is a parallelogram.


E is the mid-point of the side AD of the trapezium ABCD with AB || DC. A line through E drawn parallel to AB intersect BC at F. Show that F is the mid-point of BC. [Hint: Join AC]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×