English

In a Parallelogram Abcd, E and F Are the Midpoints of the Sides Ab and Cd Respectively. the Line Segments Af and Bf Meet the Line Segments De and Ce at Points G and H Respectively Prove That: Egfh I - Mathematics

Advertisements
Advertisements

Question

In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: EGFH is a parallelogram.

Sum

Solution


In quadrilateral AECF,
AE = CF   ....[from (i)]
AE || CF   ....[as AB || DC]
⇒ AECF is a parallelogram.
⇒ EC || AF or EH || GF      ....(i)
In quadrilateral BFDE,
BE = DF  ....[from (i)]
BE || DF  ....[as AB || DC]
⇒ BEDF is a parallelogram  
⇒ BF || ED or HF || EG     ....(ii)
From (i) and (ii), we get that
EGFH is parallelogram.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mid-point and Intercept Theorems - Exercise 15.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 15 Mid-point and Intercept Theorems
Exercise 15.2 | Q 1.3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×