English

Prove that the Figure Obtained by Joining the Mid-points of the Adjacent Sides of a Rectangle is a Rhombus. - Mathematics

Advertisements
Advertisements

Question

Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.

Sum

Solution


Join AC and BC.
In ΔABC, P and Q are the mid-point of AB and BC respectively.

PQ = `(1)/(2)"AC"`.......(i) and PQ || AC

In ΔBDC, R and Q are the mid-points of CD and BC respectively.

QR = `(1)/(2)"BD"`.......(ii) and QR || BD

But AC = BD  ...(diagonals of a rectangle)
From (i) and (ii)
PQ = QR
Similarly, QR = RS, RS = SP and RS || AC, SP || BD
Hence, PQ = QR = PS = SP
Therefore, PQRS is a rhombus.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 6

RELATED QUESTIONS

The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.

In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔGEA ≅ ΔGFD


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.


E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = `1/2` (AB + CD).

[Hint: Join BE and produce it to meet CD produced at G.]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×